by Lin Cheng, Zhi-Hang Song, Peng Zhang, Min Zhang, Hai-Bin Qu*, and Zhong-Jun Ma*

Institute of Pharmaceutical Informatics, School of Pharmaceutical Sciences, Zhejiang University, Zijingang Campus, No. 388 Yuhangtang Road, Hangzhou 310058, P. R. China (phone: +86-571-88208427; fax: +86-571-88208428; e-mail: mazj@zju.edu.cn)

A novel symmetric dimeric compound, cavalerol (1), was isolated from the 95% EtOH extract of the twigs of *Eurycorymbus cavaleriei*. Compound 1 contains an unprecedented dimeric skeleton with two identical chiral meroterpene moieties.

Introduction. – Eurycorymbus cavaleriei (LÉVL.) REHD. et HAND.-MAZZ. is a dioecious, rare, and endemic tree species in P. R. China, and there is only one species in this genus [1]. The tissue culture, genetic diversity, and properties of Eurycorymbus cavaleriei have been previously studied [2-7], but few investigations on its chemistry have been reported up to now. A novel meroterpene **1**, which showed medium activity, was obtained from the 95% EtOH extract of the twigs of Eurycorymbus cavaleriei.

Results and Discussion. – Compound **1** showed a quasimolecular-ion peak at m/z 681 ($[M - H]^-$) in the ESI-MS. The IR absorption at 3397, 1658, and 1453 cm⁻¹ suggested the presence of an OH group, a CHO group, and an aromatic chromophore in its structure. The presence of only 22 C-atom signals in the ¹³C-NMR spectrum, combined with ESI-MS data, indicated that **1** was a dimeric and C_2 -symmetric structure with the molecular formula $C_{44}H_{58}O_6$, implying 16 degrees of unsaturation. The ¹H- and ¹³C-NMR (*Table*), HMBC (*Table*), ¹H,¹H-COSY, and NOESY data (*Fig.*) of **1** and comparison of its optical rotation with that of a known compound [8] established the structure of **1** as 5,5'-dihydroxy-4,4'-bis[(2*S*,4*Z*)-6-hydroxy-5-methyl-2-(1-methylethe-nyl)hex-4-en-1-yl]-6,6'-bis(3-methylbut-2-en-1-yl)[1,1'-biphenyl]-2,2'-dicarboxalde-hyde, which was named cavalerol.

In the downfield region of the ¹H-NMR spectrum of **1**, the signals of a CHO group at δ 9.81 (*s*), a terminal CH₂=C group at δ 4.75 and 4.66 (2 br. *s*), an olefinic H-atom at δ 5.30 (*t*, *J* = 7.2 Hz), and an aromatic H-atom at δ 7.51 (*s*) were observed. In the upfield region, four Me-group *s* were discernible at δ 1.82 (6 H), 1.64 (3 H), and 1.70 (3 H). The presence of a γ , γ -dimethylallyl group in **1** was inferred from the broad *s* at δ 1.82 (6 H), the two broad *s* at δ 3.41 (1 H) and 3.42 (1 H), and the *t* at δ 5.30 (*J* = 7.2 Hz, 1 H) in the ¹H-NMR spectrum, as well as from the signals at δ 131.3 (C(3a)), 120.7 (C(2a)), 29.6 (C(1a)), 25.8 (C(4a)), and 18.0 (C(5a)) in the ¹³C-NMR spectrum [9]. The ¹H-NMR spectrum of **1** also showed the presence of a 6-hydroxylavandulyl group with signals at δ 1.64 (*s*, Me), 1.70 (*s*, Me), 2.16–2.19 (*m*, CH₂), 2.49–2.52 (*m*, CH), 2.73–2.75 (*m*, 2 H), 4.66 and 4.75 (2 br. *s*, CH₂=C), and 5.37 (*t*, *J* = 7.2 Hz, CH) [8]. The signals at δ (H) 3.99 (*s*, CH₂) and δ (C) 68.9, and the long-range correlation between H–C(4b) and C(6b) in the HMBC experiment indicated that there was an OH group at C(6b). The absolute configuration of C(2b) and C(2b) of **1** was determined as (*S*) by measuring the optical rotation

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

of $[\alpha]_{D} = +20.5$ (c = 0.060, MeOH) and comparing it with that of a similar compound [8]. Thus, compound **1** is not a *meso* form, but possesses C_2 symmetry. In the HMBC plot, the $\delta(H)$ of the CH₂ group of the γ , γ -dimethylallyl group at 3.42 was correlated with the three aromatic C-atoms at $\delta(C)$ 136.6 (C(2)), 130.1 (C(3)), and 158.5 (C(4)) (*Table*). Consequently, C(3) was substituted by the γ , γ -dimethylallyl group. The $\delta(H)$ of the CH₂ group of the 6-hydroxylavandulyl group at 2.73–2.75 correlated with the three aromatic C-atoms at $\delta(C)$ 158.5 (C(4)), 128.1 (C(5)), and 129.3 (C(6)), which suggested that the 6-hydroxylavandulyl group was attached to C(5). The $\delta(H)$ of H–C(1c) at 9.81 displayed correlations with the two C-atom signals at $\delta(C)$ 136.6 (C(2)) and 129.3 (C(6)), leading to the conclusion that the CHO group is positioned at C(1). Combined ¹³C-NMR and HR-ESI-MS evidence allowed to place the phenolic OH group at C(4) (158.4). The structure of compound **1** was further supported by ¹H,¹H-COSY and NOESY data (*Fig.*).

Figure. ¹H,¹H-COSY and NOESY Correlations of compound 1. Arbitrary atom numbering.

This project was supported by the *Program for New Century Excellent Talents at Universities* (NCET-06-0515).

Experimental Part

General. Prep. HPLC: *Agilent-1100* system; photodiode array detector; *Zorbax-C₁₈* column (*ODS*, $250 \times 21.2 \text{ mm}$, 7 µm). Optical rotations: *Jasco P-1010* polarimeter. UV Spectrum: *Jasco V-550*; λ_{max} in nm. IR Spectrum: *Jasco FTIR-4100*; in cm⁻¹. 1D- and 2D-NMR (HSQC, HMBC, COSY, NOESY) Spectra: *Bruker 600* NMR spectrometer; δ in ppm, *J* in Hz. EI-MS: *Jeol JMS-SX-102A* mass spectrometer; in *m/z*. ESI-MS: *LCQ-DECA-Thermo-Finnigan* system equipped with a hot ESI source (HESI, electrospray voltage 3.0 kV, sheath gas N₂, vaporizer temp. 50°, capillary temp. 250°, collision gas Ar, collision pressure 1.5 mTorr); in *m/z*.

Plant Material. The twigs of *Eurycorymbus cavaleriei* (LEVL.) REHD. et HAND.-MAZZ. were collected in Yuanlin, Hunan Province, P. R. China, in September 2007. The plant material was identified by the authors. A voucher specimen (No. EC070901) was deposited with the College of Pharmaceutical Sciences, Zhejiang University, P. R. China.

Extraction and Isolation. The air-dried pieces of the twigs (15.0 kg) were extracted with 95% EtOH (3×451). The crude extract was suspended in distilled H₂O, and the suspension was extracted successively with petroleum ether (3×11), CH₂Cl₂ (4×11), AcOEt (4×11), and BuOH (3×11). The petroleum ether fraction (30 g) was subjected to column chromatography (silica gel, petroleum ether/

	$\delta(H)$	$\delta(C)$	HMBC $(H \rightarrow C)$
C(1)	-	129.6	-
C(2)	-	136.6	-
C(3)	-	130.1	-
C(4)	-	158.5	-
C(5)	-	128.1	-
H-C(6)	7.51(s)	129.3	C(2), C(4), C(1b), C(1c)
$CH_2(1a)$	3.41 (d, J = 7.2)	29.6	C(2), C(3), C(4), C(2a), C(3a)
H-C(2a)	5.30(t, J = 7.2)	120.7	C(1a), C(4a), C(5a)
C(3a)	-	131.3	-
Me(4a)	1.82(s)	25.8	C(5a)
Me(5a)	1.82(s)	18.0	C(4a)
$CH_2(1b)$	2.73 - 2.75(m)	34.2	C(4), C(5), C(6), C(2b), C(3b), C(8b)
H-C(2b)	2.49 - 2.52 (m)	46.9	C(5), C(1b), C(3b), C(4b), C(8b), C(9b), C(10b)
$CH_2(3b)$	2.16-2.19 (<i>m</i>)	31.1	C(2b), C(4b), C(8b)
H-C(4b)	5.37 $(t, J = 7.2)$	124.3	C(6b), C(7b)
C(5b)	-	135.8	-
$CH_2(6b)$	3.99 (s)	68.9	C(4b), C(5b), C(7b)
Me(7b)	1.64(s)	13.9	C(4b), C(5b), C(6b)
C(8b)	-	147.3	-
$CH_2(9b)$	4.75, 4.66 (2 br. s)	111.9	C(2b), C(8b), C(10b)
Me(10b)	1.70 (s)	19.6	C(2b), C(8b), C(9b)
H-C(1c)	9.81 (s)	191.4	C(2), C(6)

Table. ¹H- and ¹³C-NMR Data (CDCl₃; 600 and 150 Hz, resp.) of Compound **1**. Arbitrary atom numbering (see Fig.).

AcOEt 100:30 (*v*/*v*)) to afford a complex mixture, which was purified by gel chromatography and then subjected to reversed-phase HPLC (MeCN/H₂O 65:35): 5,5'-*dihydroxy*-4,4'-*bis*[(2\$,4Z)-6-*hydroxy*-5-*methyl*-2-(1-*methylethenyl*)*hex*-4-*en*-1-*yl*]-6,6'-*bis*(3-*methylbu*-2-*en*-1-*yl*)-1,1'-*biphenyl*-2,2'-*dicarboxal-dehyde* (=*cavalerol*; **1**; 10 mg, $t_{\rm R}$ 17.9 min). Yellow oil. [α]_D = +20.5 (*c* = 0.060, MeOH). UV (MeOH): 194, 230, 290. IR (KBr): 3397, 2946, 2833, 2218, 2043, 1658, 1453, 1114, 1026, 655. ¹H- and ¹³C-NMR: *Table*. ESI-MS: 681 ([M - H]⁻). HR-EI-MS: 681.4127 (M^- , C₄₄H₅₇O₆⁻; calc. 681.4155).

REFERENCES

- L. K. Fu, J. M. Jin, in 'China Plant Red Data Book Rare and Endangered Plants 1', New York Science Press, Beijing, 1992, p. 558.
- [2] M. Liao, Z. R. Zhu, X. L. Wei, T. X. Jin, Seed 2005, 24, 9.
- [3] J. Chen, Y. Wang, M. Kang, J. Zhou, H. Huang, Mol. Ecol. Notes 2006, 6, 160.
- [4] L. M. Zhao, X. T. Liang, L. N. Li, J. Chin. Pharm. Sci. 1997, 6, 111.
- [5] J. Wang, Q. G. Ye, M. Kang, H. W. Huang, Conserv. Genet. 2008, 9, 559.
- [6] C. L. Chen, J. Fujian Forest. Sci. Technol. 2002, 29, 50.
- [7] Q. Q. Zhang, W. S. Wu, J. Q. Liu, J. Fujian Norm. Univ. (Nat. Sci.) 1995, 11, 79.
- [8] T. H. Kang, S. J. Jeong, W. G. Ko, N. Y. Kim, B. H. Lee, I. Masanori, M. Tomofumi, H. Ryuichi, Y. C. Kim, J. Nat. Prod. 2000, 63, 680.
- [9] S. S. Kang, J. S. Kim, K. H. Son, H. W. Chang, H. P. Kim, Fitoterapia 2000, 71, 511.

Received May 15, 2008